REFERENCES

Warning
All GenWay kits have not been tested for clinical use and are not approved in the United States by the FDA for diagnostic clinical use. They are components or reagents made solely for research use, further manufacturing and export use. It is the commitment of GenWay customers to receive its products solely for the purpose of exportation or research, and not for the purposes of clinical diagnostic use.

GENWAY BIOTECH, INC. DOES NOT MAKE ANY OTHER WARRANTY OR REPRESENTATION WHATSOEVER, WHETHER EXPRESS OR IMPLIED, WITH RESPECT TO THESE PRODUCTS. IN PARTICULAR GENWAY BIOTECH, INC. DOES NOT MAKE ANY WARRANTY OF SUITABILITY, NONINFRINGEMENT, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OF ANY PRODUCT.

Carcinoembryonic Antigen (CEA) ELISA
Catalog No. GWB-BQK050 (96 tests)

INTENDED USE
The CEA ELISA kit is used for the quantitative measurement of CEA in human serum or plasma. For research use only.

SUMMARY AND EXPLANATION
Carcinoembryonic antigen (CEA), a 180 kD intercellular adhesion molecule expressed in high concentrations in the fetus but normally not found in adult serum because the synthesis of this protein ceases after birth. However reappear in a high concentration in the sera of patients with colorectal (57%), gastric (41%), hepatocellular (45%), pancreatic (59%) and biliary (59%) carcinoma. The serum concentration of CEA can also be elevated in benign diseases of the colorectum (inflammatory bowel disease 17%), stomach (chronic gastritis and peptic ulcer 14%), liver (cirrhosis and hepatitis 17%) and pancreas (21%). Elevated levels of CEA have also been observed in patients with inflammatory nonmalignant diseases like pulmonary emphysema, alcoholic cirrhosis, pancreatitis and in heavy smokers. In contrast to cancer these elevations are transitory. The serum levels drop back into the normal range within a few weeks. The primary use of CEA is to monitor patients after surgery for recurrent colorectal carcinoma. Serum CEA has sensitivity between 60% and 95% in detecting recurrences prior to clinical detection and a lead-time between 2 and 10 months (positive predictive value 65%; negative predictive value 70%). False-positive results are usually below 10.0 ng/ml.

PRINCIPLE OF THE TEST
The CEA is a solid phase direct sandwich ELISA method. The samples and diluted anti-CEA-HRP conjugate are added to the wells coated with Mab to CEA beta subunit. CEA in the patient’s serum binds to anti-CEA MAb on the well and the anti-CEA-HRP second antibody then binds to CEA. Unbound protein and HRP conjugate are washed off by wash buffer. Upon the addition of the substrate, the intensity of color is proportional to the concentration of CEA in the samples. A standard curve is prepared relating color intensity to the concentration of the CEA.

<table>
<thead>
<tr>
<th>MATERIALS PROVIDED</th>
<th>96 tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Microwell coated with CEA MAb</td>
<td>12x8x1</td>
</tr>
<tr>
<td>2. CEA Standards: 6 vials (ready to use)</td>
<td>0.7ml</td>
</tr>
<tr>
<td>3. CEA Enzyme Conjugate: 1 bottle (ready to use)</td>
<td>12 ml</td>
</tr>
<tr>
<td>4. TMB Substrate: 1 bottle (ready to use)</td>
<td>12ml</td>
</tr>
<tr>
<td>5. Stop Solution: 1 bottle (ready to use)</td>
<td>12ml</td>
</tr>
<tr>
<td>6. 20X Wash concentrate: 1 bottle</td>
<td>25ml</td>
</tr>
</tbody>
</table>

MATERIALS NOT PROVIDED
1. Distilled or deionized water
2. Precision pipettes
3. Disposable pipette tips
4. ELISA reader capable of reading absorbance at 450 nm
5. Absorbance paper or paper towel
6. Graph paper
STORAGE AND STABILITY
1. Store the kit at 2-8 °C.
2. Keep microwells sealed in a dry bag with desiccants.
3. The reagents are stable until expiration of the kit.
4. Do not expose reagent to heat, sun, or strong light.

WARNINGS AND PRECAUTIONS
1. Potential biohazardous materials:
 - The calibrator and controls contain human source components which have been tested and found non-reactive for hepatitis B surface antigen as well as HIV antibody with FDA licensed reagents. However, as there is no test method that can offer complete assurance that HIV, Hepatitis B virus or other infectious agents are absent, these reagents should be handled at the Biosafety Level 2, as recommended in the Centers for Disease Control/National Institutes of Health manual, "Biosafety in Microbiological and Biomedical Laboratories." 1984
2. This test kit is designed for research use only.
3. Do not pipette by mouth. Do not smoke, eat, or drink in the areas in which specimens or kit reagents are handled.
4. The components in this kit are intended for use as an integral unit. The components of different lots should not be mixed.
5. It is recommended that standards, control and serum samples be run in duplicate.
6. Optimal results will be obtained by strict adherence to this protocol. Accurate and precise pipetting, as well as following the exact time and temperature requirements prescribed are essential. Any deviation from this may yield invalid data.

SPECIMEN COLLECTION HANDLING
1. Collect blood specimens and separate the serum immediately.
2. Specimens may be stored refrigerated at (2-8 °C) for 5 days. If storage time exceeds 5 days, store frozen at (-20 °C) for up to one month.
3. Avoid multiple freeze-thaw cycles.
4. Prior to assay, frozen sera should be completely thawed and mixed well.
5. Do not use grossly lipemic specimens.

REAGENTS PREPARATION
Prepare 1X Wash buffer by adding the contents of the bottle (25 ml, 20X) to 475 ml of distilled or deionized water. Store at room temperature (18-26 °C).

ASSAY PROCEDURE
Prior to assay, allow reagents to stand at room temperature. Gently mix all reagents before use.
1. Place the desired number of coated strips into the holder.
2. Pipet 50 µl of CEA standards, control and patient’s sera.
3. Add 100 µl of enzyme conjugate to all wells.
4. Cover the plate and incubate for 60 minutes at room temperature (18-26 °C).
5. Remove liquid from all wells. Wash wells three times with 300 µl of 1X wash buffer. Blot on absorbent paper towels.
6. Add 100 µl of TMB substrate to all wells.
7. Incubate for 10 minutes at room temperature.
8. Add 50 µl of stop solution to all wells. Shake the plate gently to mix the solution.
9. Read absorbance on ELISA Reader at 450 nm within 15 minutes after adding the stop solution.

CALCULATION OF RESULTS
The standard curve is constructed as follows:
1. Check CEA standard value on each standard vial. This value might vary from lot to lot. Make sure you check the value on every kit. See example of the standard attached.
2. To construct the standard curve, plot the absorbance for the CEA standards (vertical axis) versus the CEA standard concentrations (horizontal axis) on a linear graph paper. Draw the best curve through the points.
3. Read the absorbance for controls and each unknown sample from the curve. Record the value for each control or unknown sample.

Example of a Standard Curve

<table>
<thead>
<tr>
<th>Std</th>
<th>OD 450 nm</th>
<th>Conc. ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std 1</td>
<td>0.065</td>
<td>0</td>
</tr>
<tr>
<td>Std 2</td>
<td>0.230</td>
<td>3</td>
</tr>
<tr>
<td>Std 3</td>
<td>0.363</td>
<td>6</td>
</tr>
<tr>
<td>Std 4</td>
<td>0.641</td>
<td>12.5</td>
</tr>
<tr>
<td>Std 5</td>
<td>1.127</td>
<td>25</td>
</tr>
<tr>
<td>Std 6</td>
<td>2.049</td>
<td>50</td>
</tr>
</tbody>
</table>

EXPECTED VALUES
It is recommended that each laboratory establish its own normal ranges based on a representative sampling of the local population. The following values may be used as initial guideline ranges only:
- CEA Normal Value: Less than 5 ng/mL. Most people have a CEA value of below 2.5 ng/mL. In a small percentage of the population the level extends up to 5 ng/mL. Smokers have in general a higher CEA level than non-smokers.

LIMITATIONS OF THE TEST
1. The test results obtained using this kit are for research use only and are not intended to be used as a part of any official diagnosis.
2. Do not use sodium azide as preservative. Sodium azide inhibits HRP enzyme activities.

PERFORMANCE CHARACTERISTICS
1. Correlation with a Reference ELISA kit:

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>0.84</td>
<td>-2.198</td>
</tr>
</tbody>
</table>

2. Precision

<table>
<thead>
<tr>
<th>Intra-Assay</th>
<th>Serum</th>
<th>No. of Replicates</th>
<th>Mean ng/ml</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>36.0</td>
<td>1.80</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>16</td>
<td>10.9</td>
<td>0.57</td>
<td>5.2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>16</td>
<td>2.5</td>
<td>0.13</td>
<td>5.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-assay</th>
<th>Serum</th>
<th>No. of Replicates</th>
<th>Mean ng/ml</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>33</td>
<td>2.30</td>
<td>6.9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>1.00</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>2.6</td>
<td>0.25</td>
<td>9.6</td>
</tr>
</tbody>
</table>

3. Sensitivity

The sensitivity was determined by calculating the mean plus 2SD of the standard zero point tested 20 times in the same run.

<table>
<thead>
<tr>
<th>Serum</th>
<th>No. of Replicates</th>
<th>Mean ng/ml</th>
<th>Standard Deviation</th>
<th>Mean + 2SD (Sensitivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Standard</td>
<td>20</td>
<td>0.32</td>
<td>0.16</td>
<td>0.64 ng/mL</td>
</tr>
</tbody>
</table>

Carinoembryonic antigen, rev.04